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Critical temperature of finite systems in d dimensions 
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Abstract. The critical temperature of an Ising system consisting of n (d  - 1) dimensional 
layers in d dimensions is estimated for large n from the properties of random and self- 
avoiding walks (SAW) in the finite system. Denoting the deviation of T,(n) from T,(co) by 
l /nA it is found that there are two contributions, a finite size effect which applies both to a 
torus and a strip and for which 1 = d - 2 +I, and a free boundary effect which applies to 
a strip alone and for which i = l / vd .  ( v d ,  are exponents associated with the spin pair 
correlation function using the standard notation of Fisher.) The results are based on a 
perturbation expansion for SAW which should be reliable for d 4, but which needs further 
examination when d = 3. Some, but not all, of the above features are in agreement with the 
results of Fisher and Barber for the spherical model. 

1. Introduction 

A number of theoretical calculations in recent years have been devoted to the effect 
of the finite size of a system on its critical behaviour. Earlier work had been concerned 
with critical surface exponents and rounding to a finite maximum (for a review of these 
aspects see Watson 1972). More recently attention has been focused on the transition 
from (d - 1) dimensional critical behaviour to d dimensional critical behaviour in 
finite layers. 

Allan (1970) investigated the transition in critical temperature from a two dimensional 
to a three dimensional king model by means of high temperature series expansions 
for the magnetic susceptibility. Calculations were undertaken for n plane square lattice 
layers with n = 2, 3, 4 and 5 using (a) free-surface boundary conditions, (b)  periodic 
boundary conditions; an attempt was then made using the accurately known three 
dimensional value for n = CO to estimate the form of approach for large n. Writing 

Allan suggested that his calculations were consistent with A = 1 in case (a) and 1.56 1: l / v ,  
in case (b), the first result being in accord with a naive mean field theory argument given 
by Fisher and Ferdinand (1967). However, Allan pointed out that as n increased the 
susceptibility series were too short for an accurate estimation of T,(n) since there was a 
crossover from three to two dimensional behaviour ; hence the conclusions from such 
a double extrapolation process must be regarded as very tentative. More recently 
Fisher (1971) reported on more extensive calculations and suggested instead that 
II  1: 1.56 N l/v, in case (a) and ;1 2: 2 in case (b). 
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For the spherical model (d b 3) exact calculations by Fisher and Barber (1972) 
of the transition from a (d- 1) to d dimensional manifold show that A = 1 in case (a)  
and (d-2) in case (b). It is usually assumed (eg Wilson and Fisher 1972) that for d b 4 
the exponents attain their mean field values independently of the model, hence the 
above results for the spherical model might be expected to apply to the Ising and 
Heisenberg models for d 2 4. However, the above may be true only for bulk properties, 
and it is therefore worth looking around for any other information which might be 
available for the Ising and Heisenberg models. 

I t  is the aim of the present paper to discuss the problem from the point of view of 
the general structure of high temperature series expansions for these models and to 
use the analogy between self-avoiding walks and the Ising model. We shall start with 
a brief introduction based on a recent publication (Domb 1972). The susceptibility, 
specific heat, and pair correlation function for the Ising model can be expanded at high 
temperatures in the form 

(w = tanhPJ) 

where J is the interaction energy of a pair of parallel spins. The coefficients c!(? are sums 
of connected graphs of certain types which can be constructed from bonds of the lattice 
weighted in a particular manner ; we call these Ising configurations. The most important 
contribution to an king configuration is a self-avoiding walk (SAW) between two points 
of the lattice. We refer to the set of all Ising configurations connecting pairs of points 
on the lattice as an Ising walk (Brout 1972). In the publication mentioned above it is 
argued that an Ising walk is a SAW with a special type of repulsive interaction. 

If we take only the SAW contribution to the coefficients into account we obtain the 
SAW approximation to the solution. The geometrical properties of SAW are not known 
exactly but reliable conjectures have been made as a result of extrapolation from exact 
enumerations and Monte Carlo runs (see eg Domb 1969). If we make a further approxi- 
mation and ignore the self-avoiding condition on the walk we obtain the random walk 
approximation. Such an approximation should give correct results for sufficiently high 
d. It yields the Ornstein-Zernike expression for the pair correlation function (Domb 
1968) and mean field values for the critical exponents. 

In the present paper we shall confine our attention to the SAW approximation which 
we shall apply to n (d- 1) layers in d dimensions in a simple cubic type of structure 
with (i) free-surface boundary conditions, (ii) periodic boundary conditions. We can 
formulate the problem as follows. Consider all SAW of N steps starting from an origin 
in d dimensional space. Draw two (d- 1) dimensional hyperplane boundaries n layers 
apart containing the origin. For boundary conditions (i) any walk which once crosses 
the boundary is eliminated (but we must average over all possible positions of the 
origin among the n layers). For boundary conditions (ii) any walk which as a result 
of looping the torus 1,2,. . . , r, . . . times becomes self-intersecting must be eliminated. 
The critical temperature of the (d-1) layer system is determined by the number of 
surviving walks. 

It is clear from the above description that more walks will be lost by (i) than by (ii) 
and hence the depression of critical temperature will be larger in the former case. We 
shall start with the random walk approximation and will apply a perturbation treatment 
to take account of the self-avoidance. This should lead to valid results when d 2 4. 
When d = 3 we will try to draw some general conclusions based on the known behaviour 
Of SAW. 
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2. Random walk approximation 

There are two alternative methods of dealing with the properties of random walks in a 
finite strip. 

(i) The use of images (see eg Chandrasekhar 1943). 
(ii) The method of eigenvalues (Rubin 1972). 

The first method takes account of the barrier by means of a suitably located image 
point. One can think of the barrier as causing a ‘reflection’ with an appropriate phase 
change, and for a finite strip successive reflections give rise to an infinite series of images. 
The second method, which has been used very effectively to deal with problems arising 
in the adsorption of a polymer chain at a free surface, constructs a series of difference 
equations relating the behaviour at layer t with that at layers (t- 1) and ( t +  1). The 
matrix of these equations is found to be identical with that arising in the lattice dynamics 
of a linear chain, and hence the eigenvalues and eigenvectors can readily be calculated. 

We shall use method (ii) to obtain exact expressions for the total number of walks 
of N steps, and the number at their starting point after N steps. However, we shall then 
find it convenient to revert to the physical picture of method (i) to give a geometrical 
interpretation of the result obtained. 

Let cN(t) be the total number of walks which are at layer t after N steps. Then if 
1 c t c n we have the relations 

(3) CN + 1 ( t )  = (2d - 2)cN( t )  + CN(t - 1) + CN(t + 1). 

CN(0) = c,(n+ 1) = 0. 

C N + l  = AcN (4) 

Equation (3) can be extended to t = 1 and t = n provided we take 

We write (3) in the form 

where the matrix A is identical with that which arises in the problem of a linear chain 
of harmonic oscillators with fixed ends. 

The eigenvalue equations can be put in the form 

Ax(r) = (26-2)x(r)+x(r- l )+x(r+l) .  ( 5 )  

x(r )  = A exp ire + B exp -ire (6)  

1 = ( 2 d - 2 ) + 2 c ~ s e  = 2d-4sin2fB. (7) 

Putting 

we obtain 

To satisfy the boundary conditions at t = 0 and n we must have 

B =  - A  

sin(n+ l ) O  = 0. 

Hence we find for the eigenvalues 

S7l 2, = 2d-4 sin2 ___ ( s =  1,2,3 ) . . . )  n) 
2(n + 1) (9) 
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and for the eigenvectors 

rsn 
x,(r) = sin- 

n + l '  

To normalize the eigenvectors we must multiply by a factor ( ~ ~ ( 1 ) ~  + . . . xs(n)2)-  ' I 2  
which is easily shown to be {$(n+ l)}- ' I 2 .  

It is a straightforward matter to calculate the total number of walks of N steps 
which start from a particular t ,  by choosing an initial vector uo having 1 in the tth 
position and zero elesewhere, and expanding uo in terms of the eigenvectors x,. If we 
then average from t = 1 to n we obtain the random walk approximation to the suscepti- 
bility coefficient in the form 

To determine uN the number of returns to the origin after N steps we must generate 
the space distribution of the c,(t). Define c,(t; I , ,  . . . , 1,- 1) to be the number of walks 
at ( I , , .  . . , I , -  1) in ( d -  1) space after N steps. Write 

QN(t; xl,. . . , xd- 1) = 1 c,(t; I , ,  . . . , I d -  l ) ~ y  . . . x ~ z { .  (12) 
l l . . . . , l d -  1 

Then it is easy to establish by analogy with (3) the relations 

f = x; '  +xl + x i '  + x ,  +. . . +xi- l ,  + X d _  , (14) 

The matrix A ( x J  corresponding to (13) has exactly the same eigenvectors as A in 
is the generating function for walks in (d  - 11 space. 

(4), but instead of (9) the eigenvalues are now 

S'II 
E J f )  =f+2-4sin2----- 2(n + 1) (s = 1,2,. . . , n). (15) 

For returns to the origin we must sort out the coefficient independent of x i .  By a similar 
procedure to that used before we find for the random walk approximation to the energy 
coefficient 

'd-1 
u,(strip) 31 ,N(d-l)/Z 1 "; 

s= 1 

Here A d -  is the constant characterizing returns to the origin in ( d -  1) dimensional 
space, that is, the number of such returns is A,- ,{2(d- l)}N/N(d-')'2. 

We can draw a number of conclusions from formulae (11) and (16). The critical 
temperature corresponds to the radius of convergence of the series (2) and is therefore 
given by 

Hence we see on reference to (1) that for large d the correct value of il is equal to 2, and 
we may reasonably term this the true mean field value. The naive mean field value of 
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13. = 1 quoted by Fisher and Ferdinand (1967) takes into account only the average 
change of coordination number, and not the adjustment of the mean field because of 
the presence of the boundary. This has already been pointed out by Binder and Hohen- 
berg (1972), who give reference to earlier work which made use of 'Ginzburg-Landau' 
theory (see also Kaganov and Omel'yanchuk 1971). 

Next we see that even for a modest value of n the eigenvalue spectrum is closely 
spaced, and it would be difficult to estimate the critical temperature accurately from 
extrapolation until relatively high values of N .  The susceptibility series ( l l ) ,  in which 
the weighting of the second-largest eigenvalue is approximately 6 of the largest eigen- 
value, will yield a much better estimate than the specific heat series (16) in which the 
weightings are equal. 

Although this approximation gives mean field exponents for all d > 2 there is a 
change of exponent in as,  the singular part of the specific heat which changes from 
2 - (d - 1)/2 to 2 - d/2. The manner in which this change is achieved will be clear on 
studying the behaviour of the coefficients in (16) for different values of N .  When N >> n2 
the largest eigenvalue dominates and the behaviour of the coefficients is (d- 1) dimen- 
sional, 

However, when N decreases to become comparable with n2 we have 

which is d dimensional behaviour. From this we can delineate the regions near T, 
which correspond to (d- 1) and d dimensional behaviour, and deduce that the rounding 
exponent (0 in Fisher and Barber's notation) is equal to 2. 

To calculate the critical surface exponents we must examine the behaviour of (1 1) 
and (16) for large n as far as the term in l/n. This requires careful treatment but we 
have been able to verify that both the susceptibility and specific heat satisfy the relation 

II/" = I)++ = * + V  (20) 

where $" represents the surface and I(/ the bulk exponent. 
For a torus the problem is simpler since there is no difference in behaviour for any 

starting point t.  It is clear that the total number of walks, c N ,  retains the d dimensional 
value of (24,. However, the number of returns to the origin after N steps U,, is changed, 
since it must now include walks which are at the origin as a result of looping the torus. 
Hence we may write 

where the first number p in c&, q)  refers to the dth dimension, and the bold number q 
refers to the remaining (d- 1) dimensions. Using asymptotic expressions for the number 
of random walks in (21) (Domb 1970) we find that 

2N 

m 

u,(torus) N "z (2d)NAd( 1 + 2 zl exp - 
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As in (16). if we examine (22) for different values of N we can delineate the regions of 
d dimensional behaviour ( N  << n 2 )  and (d - 1)  dimensional behaviour ( N  >> n 2 )  and 
hence describe in detail the change of exponent. 

We thus see that for a torus the random walk approximation leads to no change 
in critical temperature, and we must proceed to  a higher approximation to find the 
order of magnitude of the change. 

We now use the theory of random walks to provide a geometrical interpretation 
of the shift in T,  of order l/n2 since this will help us to consider the analogous problem 
for a SAW. We have dealt with a particle describing a random walk in a finite slab 
consisting of n (d - 1)  layers in d dimensions. At each point the particle has ( 2 4  possible 
choices except at the boundary where it has only (2d- 1)  choices. We are concerned 
with a long walk in which the particle diffuses forwards and backwards m times between 
the boundaries, and each transition from one boundary to the other takes M steps 
( N  = mM). From diffusion theory we know that 

n - aM1l2. (23) 

The total number of walks is then of the order 

{(2d)M-’(2d- l)}m = 1 -- = (2d)N 1 -- ( id)”:” ( 2;M)” 

so that the new effective coordination number is 

a’ 
n2 

2d- - - .  

This is in agreement with (17). 

3. Perturbation treatment of random walks 

The idea of introducing a repulsive interaction between pairs of steps of a random walk 
and hence making a transition from a random walk to a SAW was first put forward by 
Brout (1961) and has been developed recently by Domb and Joyce (1972). Brout showed 
that a certain class of diagrams (termed ‘ladder diagrams’ by Domb and Joyce) could 
be summed in closed form and yielded the spherical model solution. There is theoretical 
evidence to suggest that in high dimensions (d > 4) the non-ladder diagrams cease to 
play a significant role, and the ladder approximation is close to the true solution. We 
should emphasize that the above agreement with the spherical model is formal in 
character; we are in fact dealing with an approximation to SAW and not with a set of 
lattice spins satisfying the spherical model condition (Joyce 1972). We may take as 
an illustrative parallel the Bethe approximation and the solution for a ‘Bethe’ lattice 
(Domb 1960 p 284). Although these two give the same result for bulk free energy their 
surface properties are quite different. Thus although some of our results may agree 
with those of Fisher and Barber (1972) for the spherical model, we should not be surprised 
to find that some of them differ. 

Domb and Joyce introduced an interaction wdij between each pair of points of a 
random walk which occupied sites i and j of the lattice. A perturbation expansion was 
developed in powers of w, w = - 1 corresponding to the SAW. The ladder diagrams 
could all be expressed in terms of the generating function for random walk returns 
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to the origin : 
m 

h' R(x) = 1 -x' = e(x)+f(x)(l -x)' 
n = 2  C N  

where 

e(x)  = e , + e , ( l - x ) + e , ( l - x ) 2 + . . . .  (17) 

CN(W)  * (P(W)IN (28) 

Domb and Joyce found that if we denote the new value of cN by 

then ~ ( w )  depends on e ,  only. 
When we introduce a cyclic boundary into the problem, we introduce the possibility 

of new contacts after 1,2,3, . . . loops of the torus. This means that R(x) must be replaced 
by 

R ( x )  + ~ ( R , ( x )  + R,,(x) + R~,,(x)  + . . (29) 

where R,,(x) corresponds to contacts after looping the torus s times. Now 

using the same notation as in (21). The function R,(x) is well known (Joyce 1972, 
Montroll and Weiss 1965) as 

where the function F tends to a finite limit as x -, 1. In fact we require only the analogue 
of e,  (= (R(1)) which is 

Similarly for RJx). Hence in the ladder approximation e, is replaced by 

l i  
,,+,i B l + T + F +  1 1 ...$-2+... ' (33) 

The series converges as long as d 2 4. Hence as long as d 2 4 this finite size effect 
is of order l/nd-2. This is the same as the result obtained by Fisher and Barber (1972) 
for the spherical model with cyclic boundaries. 

We can understand geometrically why this finite size effect is dimension dependent. 
Let us consider a particle diffusing in d dimensional space. When we put the particle 
on a torus we must eliminate all contacts which arise because the particle has looped 
the torus. These will be represented by the 'overlap' with the original distribution of 
walks which have remained in the same position in the dth dimension after traversing 
n layers of the lattice. However, the walks will have diffused in the remaining ( d -  1)  
dimensions, and the larger the value of d the smaller the overlap. 

For a finite strip we may also expect a finite size effect comparable to the above, 
corresponding to the overlap of walks after reflection from the boundary. As long as 
d > 4 this finite size effect is of less significance than the effect of the free boundary. 
When d = 4 the two effects are of comparable size. 
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We note that when d = 3 the series (33) diverges, and this means that the non-ladder 
diagrams now play a fundamental role. Since these diagrams are complex and difficult 
to analyse we adopt an alternative starting point of free SAW in three dimensions. The 
discussion must now be more qualitative, but we hope that we can obtain a heuristic 
idea of the magnitude of the two effects described above. 

4. Self-avoiding walks in three dimensions 

When we pass from a random walk to a self-avoiding walk the total number of walks 
and their space distribution both change. For example cN and uN become 

where p is the new ‘effective coordination number’, and g and h are exponents which 
differ from the random walk values in three dimensions (g = 0, h = 8. Similarly the 
mean square end-to-end length of the walk becomes 

( R i )  - N Z V ,  (35) 

where v is approximately (and possibly exactly) $ instead of 4, which corresponds to a 
random walk. A SAW can conveniently be related to a diffusion process in the presence 
of a potential (Edwards 1965). 

If we now try to estimate the effect of a finite barrier we can use the same diffusion 
argument as at the end of 9 2, but instead of (23) we have 

n - aM’. (36)  

The total number of walks is then of the order 

so that the new effective coordination number is now 

p - b ( :) ” .  

Interpreting (38) for the Ising model we find that the barrier itself produces a lowering 
of critical temperature of order n-’Iv3 where v 3  is the three dimensional correlation 
exponent (Fisher 1967). This has the form of Fisher’s estimate (1971). 

To deal with a cyclic barrier we follow the perturbation procedure described in 
8 3, introducing an interaction wSij between each pair of points of the SAW, and putting 
w = - 1 to eliminate all walks which cease to be self-avoiding after looping the torus. 
The perturbation diagrams are exactly the same as described by Domb and Joyce 
(1972), but because of the self-avoidance condition different sections of the walk are 
no longer independent, and therefore the expression of these diagrams in terms of 
products of generating functions is no longer correct. Nevertheless since the only 
interactions correspond to walks a great distance apart, it is reasonable to expect that 
the generating function description will give an estimate of the order of magnitude of 
the various terms. 
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We use an asterisk to denote the analogues of the functions in (29). Since there are 
no direct contacts 

R*(x)  = 0. (39) 

Instead of (31) we have for SAW (Domb 1970) 

where q (Fisher 1967) is small but greater than zero (about & in three dimensions); 
thus the value of R,*(l) is-instead of ( 3 2 F  

In the ladder approximation we have 

e,* = - 

where the sum on the right-hand side of (42) now converges. 
From (42) we see that the first-order term in the expansion in powers of e,* is the 

most important, and is of order n- -". There is evidence that non-ladder terms which 
involve at least two contacts will be of order n - 2 - 2 q .  

Our analysis therefore leads to the suggestion that in three dimensions a finite 
size effect of order n - l - "  may be more important than the presence of a finite barrier. 
For a torus this is the only effect present, whereas for a finite strip there is an additional 
effect of order n - l I v 3 .  This suggestion is put forward only tentatively and we hope 
to undertake a program of numerical studies of SAW to provide a better basis for an 
assessment. 

The numerical estimates of Allan (1970) discussed in the introduction seem to lead 
to a different conclusion. However, we wish to point out that for a torus each successive 
looping produces a marked effect, and successive effects diminish rather slowly. In 
considering the 12th term of a susceptibility series, for example, n = 3 allows four 
loops of the torus, whereas n = 7 or 8 allow only one. Thus for lower values of n a 
larger proportion of the total contribution has been taken into account than for higher 
values of n, and the convergence in n has been artificially accelerated. A similar type of 
effect might also be expected to occur with a finite strip, but it is more difficult to dis- 
entangle the various contributions in this case. The extrapolation procedure would be 
more reliable if the contributions of successive loops of the torus could be kept separate; 
we hope to undertake numerical calculations for SAW taking this into account. 

We may also note that recent exact calculations for finite systems by Binder (1972) 
have suggested that the shift in critical temperature in three dimensions may be of 
order n- '. 

5. Conclusions 

It is suggested that there are two independent effects which determine the deviation in 
critical temperature of an n layer (d - 1) dimensional king system from the bulk d dimen- 
sional value: (i) the finite size effect of order l /nd-2+q;  (ii) the effect of free boundaries 



Critical temperature offinite systems in d dimensions 1305 

of order 1/n1”. When d 2 4 the deviation is of order l /nz  for a free boundary, and 
of order l/nd-’ for a cyclic boundary. When d = 3 the deviation is of order l / n l + q  for 
both types of boundary, but the free boundary has an extra term of order 1/n1”. 

Certain of the above features are in agreement with the results of Fisher and Barber 
(1972) for the spherical model. The most significant difference is in the value of 1 for 
a free surface which the above authors find to be 1 .  
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